Nonflammable Polyfluorides‐Anchored Quasi‐Solid Electrolytes for Ultra‐Safe Anode‐Free Lithium Pouch Cells without Thermal Runaway

Author:

Hu Anjun12,Chen Wei1,Li Fei1,He Miao1,Chen Dongjiang1,Li Yaoyao1,Zhu Jun1,Yan Yichao1,Long Jianping2,Hu Yin13,Lei Tianyu1,Li Baihai3,Wang Xianfu1,Xiong Jie1ORCID

Affiliation:

1. State Key Laboratory of Electronic Thin Film and Integrated Devices School of Physics University of Electronic Science and Technology of China Chengdu 610054 China

2. College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China

3. School of Materials and Energy University of Electronic Science and Technology of China Chengdu 610054 China

Abstract

AbstractThe safe operation of rechargeable batteries is crucial because of numerous instances of fire and explosion mishaps. However, battery chemistry involving metallic lithium (Li) as the anode is prone to thermal runaway in flammable organic electrolytes under abusive conditions. Herein, an in situ encapsulation strategy is proposed to construct nonflammable quasi‐solid electrolytes through the radical polymerization of a hexafluorobutyl acrylate (HFBA) monomer and a pentaerythritol tetraacrylate (PETEA) crosslinker. The quasi‐solid system eliminates the inherent flammability of ether electrolytes with zero self‐extinguishing time owing to the gas‐phase radical capturing ability of HFBA. Additionally, the graphitized carbon layer generated during the decomposition of PETEA at high temperatures obstructs the heat and oxygen required for combustion. When coupled with Au‐modified reduced graphene oxide anodic current collectors and lithium sulfide cathodes, the assembled anode‐free Li‐metal cell based on the quasi‐solid electrolyte exhibits no signs of cell expansion or gas generation during cycling, and thermal runaway is eliminated under multiple mechanical, electrical, and thermal abuse scenarios and even rigorous strikes. This nonflammable quasi‐solid configuration with gas‐ and condensed‐phase flame‐retardant mechanisms can drive a technological leap in anode‐free Li‐metal pouch cells and secure the practical applications necessary to power this society in a safe manner.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3