Bypassing the Single Junction Limit with Advanced Photovoltaic Architectures

Author:

Lüer Larry1ORCID,Peters Ian Marius2,Corre Vincent M. Le1,Forberich Karen2,Guldi Dirk M.3,Brabec Christoph J.12ORCID

Affiliation:

1. Institute of Materials for Electronics and Energy Technology (i‐MEET) Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Martensstrasse 7 91058 Erlangen Germany

2. High Throughput Methods in Photovoltaics Forschungszentrum Jülich GmbH Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (HI ERN) Immerwahrstraße 2 91058 Erlangen Germany

3. Department of Chemistry and Pharmacy Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstr. 3 91058 Erlangen Germany

Abstract

AbstractMultijunction devices and photon up‐ and down‐conversion are prominent concepts aimed at increasing photovoltaic efficiencies beyond the single junction limit. Integrating these concepts into advanced architectures may address long‐standing issues such as processing complexity, microstructure control, and resilience against spectral changes of the incoming radiation. However, so far, no models have been established to predict the performance of such integrated architectures. Here, a simulation environment based on Bayesian optimization is presented, that can predict and virtually optimize the electrical performance of multi‐junction architectures, both vertical and lateral, in combination with up‐ and down‐conversion materials. Microstructure effects on performance are explicitly considered using machine‐learned predictive models from high throughput experimentation on simpler architectures. Two architectures that would surpass the single junction limit of photovoltaic energy conversion at reasonable complexity are identified: a vertical “staggered half octave system,” where selective absorption allows the use of 6 different bandgaps, and the lateral “overlapping rainbow system” where selective irradiation allows the use of a narrowband energy acceptor with reduced voltage losses, according to the energy gap law. Both architectures would be highly resilient against spectral changes, in contrast with two terminal multi‐junction architectures which are limited by Kirchhoff's law.

Funder

Deutsche Forschungsgemeinschaft

Solar Technologies go Hybrid

Medizinische Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg

Helmholtz Association

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference34 articles.

1. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics‐Report.pdf

2. https://www.nrel.gov/pv/interactive‐cell‐efficiency.html

3. Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency

4. Diffractive Spectral-Splitting Optical Element Designed by Adjoint-Based Electromagnetic Optimization and Fabricated by Femtosecond 3D Direct Laser Writing

5. Q.Huang Q.Peng J.Hu H.Xu C.Jiang Q.Liu 2016 IEEE Advanced Information Management Communicates Electronic and Automation Control Conf. (IMCEC) IEEE Piscataway NJ2016 pp.1528–1532.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3