Design of Fluoro‐Free Surfaces Super‐Repellent to Low‐Surface‐Tension Liquids

Author:

Wong William S. Y.1ORCID,Kiseleva Mariia S.1,Zhou Shaochen1,Junaid Muhammad1,Pitkänen Leena2,Ras Robin H. A.1ORCID

Affiliation:

1. Department of Applied Physics School of Science Aalto University Espoo FI‐02150 Finland

2. Department of Bioproducts and Biosystems School of Chemical Engineering Aalto University Espoo FI‐02150 Finland

Abstract

AbstractSuper‐liquid‐repellent surfaces feature high liquid contact angles and low sliding angles find key applications in anti‐fouling and self‐cleaning. While repellency for water is easily achieved with hydrocarbon functionalities, repellency for many low‐surface‐tension liquids (down to 30 mN m−1) still requires perfluoroalkyls (a persistent environmental pollutant and bioaccumulation hazard). Here, the scalable room‐temperature synthesis of stochastic nanoparticle surfaces with fluoro‐free moieties is investigated. Silicone (dimethyl and monomethyl) and hydrocarbon surface chemistries are benchmarked against perfluoroalkyls, assessed using model low‐surface‐tension liquids (ethanol–water mixtures). It is discovered that both hydrocarbon‐ and dimethyl‐silicone‐based functionalization can achieve super‐liquid‐repellency down to 40–41 mN m−1 and 32–33 mN m−1, respectively (vs 27–32 mN m−1 for perfluoroalkyls). The dimethyl silicone variant demonstrates superior fluoro‐free liquid repellency likely due to its denser dimethyl molecular configuration. It is shown that perfluoroalkyls are not necessary for many real‐world scenarios requiring super‐liquid‐repellency. Effective super‐repellency of different surface chemistries against different liquids can be adequately predicted using empirically verified phase diagrams. These findings encourage a liquid‐centric design, i.e., tailoring surfaces for target liquid properties. Herein, key guidelines are provided for achieving functional yet sustainably designed super‐liquid‐repellency.

Funder

Academy of Finland

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3