Widely Tunable Berry Curvature in the Magnetic Semimetal Cr1+δTe2

Author:

Fujisawa Yuita1,Pardo‐Almanza Markel1,Hsu Chia‐Hsiu1234,Mohamed Atwa1,Yamagami Kohei1,Krishnadas Anjana1,Chang Guoqing4,Chuang Feng‐Chuan235,Khoo Khoong Hong6,Zang Jiadong78,Soumyanarayanan Anjan910,Okada Yoshinori1ORCID

Affiliation:

1. Quantum Materials Science Unit Okinawa Institute of Science and Technology (OIST) Okinawa 904‐0495 Japan

2. Department of Physics National Sun Yat‐sen University Kaohsiung 80424 Taiwan

3. Physics Division National Center for Theoretical Sciences Taipei 10617 Taiwan

4. Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore

5. Center for Theoretical and Computational Physics National Sun Yat‐sen University Kaohsiung 80424 Taiwan

6. Institute of High Performance Computing Agency for Science Technology and Research Singapore 138632 Singapore

7. Department of Physics and Astronomy University of New Hampshire Durham NH 03824 USA

8. Materials Science Program University of New Hampshire Durham NH 03824 USA

9. Department of Physics National University of Singapore Singapore 117551 Singapore

10. Institute of Materials Research and Engineering Agency for Science Technology and Research Singapore 138634 Singapore

Abstract

AbstractMagnetic semimetals have increasingly emerged as lucrative platforms hosting spin‐based topological phenomena in real and momentum spaces. Cr1+δTe2 is a self‐intercalated magnetic transition metal dichalcogenide (TMD), which exhibits topological magnetism and tunable electron filling. While recent studies have explored real‐space Berry curvature effects, similar considerations of momentum‐space Berry curvature are lacking. Here, the electronic structure and transport properties of epitaxial Cr1+δTe2 thin films are systematically investigated over a range of doping, δ (0.33 – 0.71). Spectroscopic experiments reveal the presence of a characteristic semi‐metallic band region, which shows a rigid like energy shift with δ. Transport experiments show that the intrinsic component of the anomalous Hall effect (AHE) is sizable and undergoes a sign flip across δ. Finally, density functional theory calculations establish a link between the doping evolution of the band structure and AHE: the AHE sign flip is shown to emerge from the sign change of the Berry curvature, as the semi‐metallic band region crosses the Fermi energy. These findings underscore the increasing relevance of momentum‐space Berry curvature in magnetic TMDs and provide a unique platform for intertwining topological physics in real and momentum spaces.

Funder

Core Research for Evolutional Science and Technology

Basic Energy Sciences

U.S. Department of Energy

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3