In Vivo Microrheology Reveals Local Elastic and Plastic Responses Inside 3D Bacterial Biofilms

Author:

Ohmura Takuya1ORCID,Skinner Dominic J.23ORCID,Neuhaus Konstantin14ORCID,Choi Gary P. T.5ORCID,Dunkel Jörn2ORCID,Drescher Knut1ORCID

Affiliation:

1. Biozentrum University of Basel Spitalstrasse 41 Basel 4056 Switzerland

2. Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139‐4307 USA

3. NSF‐Simons Center for Quantitative Biology Northwestern University Evanston IL 60201 USA

4. Department of Physics Philipps‐Universität Marburg Renthof 5 35032 Marburg Germany

5. Department of Mathematics The Chinese University of Hong Kong N.T. Hong Kong

Abstract

AbstractBacterial biofilms are highly abundant 3D living materials capable of performing complex biomechanical and biochemical functions, including programmable growth, self‐repair, filtration, and bioproduction. Methods to measure internal mechanical properties of biofilms in vivo with spatial resolution on the cellular scale have been lacking. Here, thousands of cells are tracked inside living 3D biofilms of the bacterium Vibrio cholerae during and after the application of shear stress, for a wide range of stress amplitudes, periods, and biofilm sizes, which revealed anisotropic elastic and plastic responses of both cell displacements and cell reorientations. Using cellular tracking to infer parameters of a general mechanical model, spatially‐resolved measurements of the elastic modulus inside the biofilm are obtained, which correlate with the spatial distribution of the polysaccharides within the biofilm matrix. The noninvasive microrheology and force‐inference approach introduced here provides a general framework for studying mechanical properties with high spatial resolution in living materials.

Funder

Alfred P. Sloan Foundation

Simons Foundation

National Science Foundation

MathWorks

Japan Society for the Promotion of Science

Human Frontier Science Program

National Center of Competence in Research AntiResist

Deutsche Forschungsgemeinschaft

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3