A Concerted Redox‐ and Light‐Activated Agent for Controlled Multimodal Therapy against Hypoxic Cancer Cells

Author:

Liu Jiangping1ORCID,Prentice Andrew W.2ORCID,Clarkson Guy J.1ORCID,Woolley Jack M.1ORCID,Stavros Vasilios G.13ORCID,Paterson Martin J.2ORCID,Sadler Peter J.1ORCID

Affiliation:

1. Department of Chemistry University of Warwick CV4 7AL Coventry UK

2. School of Engineering & Physical Sciences Heriot‐Watt University EH14 4AS Edinburgh UK

3. School of Chemistry University of Birmingham Edgbaston B15 2TT Birmingham UK

Abstract

AbstractHypoxia represents a remarkably exploitable target for cancer therapy, is encountered only in solid human tumors, and is highly associated with cancer resistance and recurrence. Here, a hypoxia‐activated mitochondria‐accumulated Ru(II) polypyridyl prodrug functionalized with conjugated azo (Az) and nitrogen mustard (NM) functionalities, RuAzNM, is reported. This prodrug has multimodal theranostic properties toward hypoxic cancer cells. Reduction of the azo group in hypoxic cell microenvironments gives rise to the generation of two primary amine products, a free aniline mustard, and the polypyridyl RuNH2 complex. Thus, the aniline mustard triggers generation of reactive oxygen species (ROS) and mtDNA crosslinking. Meanwhile, the resultant biologically benign phosphorescent RuNH2 gives rise to a diagnostic signal and signals activation of the phototherapy. This multimodal therapeutic effect eventually elevates ROS levels, depletes reduced nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP), and induces mitochondrial membrane damage, mtDNA damage, and ultimately cell apoptosis. This unique strategy allows controlled multimodal theranostics to be realized in hypoxic cells and multicellular spheroids, making RuAzNM a highly selective and effective cancer‐cell‐selective theranostic agent (IC50 = 2.3 µm for hypoxic HepG2 cancer cells vs 58.2 µm for normoxic THL‐3 normal cells). This is the first report of a metal‐based compound developed as a multimodal theranostic agent for hypoxia.

Funder

Natural Science Foundation of Guangdong Province

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3