Ion–Dipole Interaction Enabling Highly Efficient CsPbI3 Perovskite Indoor Photovoltaics

Author:

Wang Kai‐Li1,Lu Haizhou2,Li Meng3,Chen Chun‐Hao1,Bo Zhang Ding‐4,Chen Jing1,Wu Jun‐Jie1,Zhou Yu‐Hang1,Wang Xue‐Qi1,Su Zhen‐Huang5,Shi Yi‐Ran1,Tian Qi‐Sheng1,Ni Yu‐Xiang4,Gao Xing‐Yu5,Zakeeruddin Shaik M.2,Grätzel Michael2,Wang Zhao‐Kui1ORCID,Liao Liang‐Sheng16

Affiliation:

1. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University Suzhou 215123 P. R. China

2. Prof. Michael Grätzel Laboratory of Photonics and Interfaces Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH‐1015 Switzerland

3. Key Lab for Special Functional Materials Ministry of Education School of Materials Science and Engineering and Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China

4. School of Physical Science and Technology Southwest Jiaotong University Chengdu 610031 P. R. China

5. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 P. R. China

6. Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa Macau SAR 999078 P. R. China

Abstract

AbstractMetal halide perovskites are ideal candidates for indoor photovoltaics (IPVs) because of their easy‐to‐adjust bandgaps, which can be designed to cover the spectrum of any artificial light source. However, the serious non‐radiative carrier recombination under low light illumination restrains the application of perovskite‐based IPVs (PIPVs). Herein, polar molecules of amino naphthalene sulfonates are employed to functionalize the TiO2 substrate, anchoring the CsPbI3 perovskite crystal grains with a strong ion–dipole interaction between the molecule‐level polar interlayer and the ionic perovskite film. The resulting high‐quality CsPbI3 films with the merit of defect‐immunity and large shunt resistance under low light conditions enable the corresponding PIPVs with an indoor power conversion efficiency of up to 41.2% (Pin: 334.11 µW cm−2, Pout: 137.66 µW cm−2) under illumination from a commonly used indoor light‐emitting diode light source (2956 K, 1062 lux). Furthermore, the device also achieves efficiencies of 29.45% (Pout: 9.80 µW cm−2) and 32.54% (Pout: 54.34 µW cm−2) at 106 (Pin: 33.84 µW cm−2) and 522 lux (Pin: 168.21 µW cm−2), respectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3