Sampling the Materials Space for Conventional Superconducting Compounds

Author:

Cerqueira Tiago F. T.1ORCID,Sanna Antonio2ORCID,Marques Miguel A. L.3ORCID

Affiliation:

1. CFisUC Department of Physics University of Coimbra Rua Larga Coimbra 3004‐516 Portugal

2. Max‐Planck‐Institut für Mikrostrukturphysik Weinberg 2 D‐06120 Halle Germany

3. Research Center Future Energy Materials and Systems of the University Alliance Ruhr Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 D‐44801 Bochum Germany

Abstract

AbstractA large scale study of conventional superconducting materials using a machine‐learning accelerated high‐throughput workflow is performed, starting by creating a comprehensive dataset of around 7000 electron–phonon calculations performed with reasonable convergence parameters. This dataset is then used to train a robust machine learning model capable of predicting the electron–phonon and superconducting properties based on structural, compositional, and electronic ground‐state properties. Using this machine, the transition temperatures (Tc) of approximately 200 000 metallic compounds are evaluated, all of which are on the convex hull of thermodynamic stability (or close to it) to maximize the probability of synthesizability. Compounds predicted to have Tc values exceeding 5 K are further validated using density‐functional perturbation theory. As a result, 541 compounds with Tc values surpassing 10 K, encompassing a variety of crystal structures and chemical compositions, are identified. This work is complemented with a detailed examination of several interesting materials, including nitrides, hydrides, and intermetallic compounds. Particularly noteworthy is LiMoN2, which is predicted to be superconducting in the stoichiometric trigonal phase, with a Tc exceeding 38 K. LiMoN2 has previously been synthesized in this phase, further heightening its potential for practical applications.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3