High‐Efficiency Thermal‐Shock Resistance Enabled by Radiative Cooling and Latent Heat Storage

Author:

Qin Mulin1,Jia Kaihang2,Usman Ali1,Han Shenghui1,Xiong Feng1,Han Haiwei1,Jin Yongkang1,Aftab Waseem1,Geng Xiaoye1,Ma Bingbing1,Ashraf Zubair1,Gao Song1,Wang Yonggang1,Shen Zhenghui1,Zou Ruqiang123ORCID

Affiliation:

1. Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials School of Materials Science and Engineering Peking University Beijing 100871 P. R. China

2. Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P. R. China

3. School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China

Abstract

AbstractRadiative cooling technology is well known for its subambient temperature cooling performance under sunlight radiation. However, the intrinsic maximum cooling power of radiative cooling limits the performance when the objects meet the thermal shock. Here, a dual‐function strategy composed of radiative cooling and latent heat storage simultaneously enabling the efficient subambient cooling and high‐efficiency thermal‐shock resistance performance is proposed. The electrospinning and absorption‐pressing methods are used to assemble the dual‐function cooler. The high sunlight reflectivity and high mid‐infrared emissivity of radiative film allow excellent subambient temperature of 5.1 °C. When subjected the thermal shock, the dual‐function cooler demonstrates a pinning effect of huge temperature drop of 39 °C and stable low‐temperature level by isothermal heat absorption compared with the traditional radiative cooler. The molten phase change materials provide the heat‐time transfer effect by converting thermal‐shock heat to the delayed preservation. This strategy paves a powerful way to protect the objects from thermal accumulation and high‐temperature damage, expanding the applications of radiative cooling and latent heat storage technologies.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3