Realizing the Heteromorphic Superlattice: Repeated Heterolayers of Amorphous Insulator and Polycrystalline Semiconductor with Minimal Interface Defects

Author:

Lee Woongkyu1ORCID,Chen Xianyu1,Shao Qing2ORCID,Baik Sung‐Il1ORCID,Kim Sungkyu1,Seidman David1ORCID,Bedzyk Michael13ORCID,Dravid Vinayak1,Ketterson John B.3ORCID,Medvedeva Julia4ORCID,Chang Robert P. H.1,Grayson Matthew A.2ORCID

Affiliation:

1. Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA

2. Department of Electrical and Computer Engineering Northwestern University Evanston IL 60208 USA

3. Department of Physics and Astronomy Northwestern University Evanston IL 60208 USA

4. Department of Physics Missouri University of Science and Technology Rolla MO 65409 USA

Abstract

AbstractAn unconventional “heteromorphic” superlattice (HSL) is realized, comprised of repeated layers of different materials with differing morphologies: semiconducting pc‐In2O3 layers interleaved with insulating a‐MoO3 layers. Originally proposed by Tsu in 1989, yet never fully realized, the high quality of the HSL heterostructure demonstrated here validates the intuition of Tsu, whereby the flexibility of the bond angle in the amorphous phase and the passivation effect of the oxide at interfacial bonds serve to create smooth, high‐mobility interfaces. The alternating amorphous layers prevent strain accumulation in the polycrystalline layers while suppressing defect propagation across the HSL. For the HSL with 7:7 nm layer thickness, the observed electron mobility of 71 cm2 Vs‐1, matches that of the highest quality In2O3 thin films. The atomic structure and electronic properties of crystalline In2O3/amorphous MoO3 interfaces are verified using ab‐initio molecular dynamics simulations and hybrid functional calculations. This work generalizes the superlattice concept to an entirely new paradigm of morphological combinations.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3