Trivalent Europium‐Doped CsCl Quantum Dots for MA‐Free Perovskite Solar Cells with Inherent Bandgap through Lattice Strain Compensation

Author:

Zhuang Xinmeng1,Zhou Donglei1ORCID,Liu Shuainan1,Shi Zhichong2,Sun Rui1,Liang Jin1,Jia Yanrun1,Bian Shuhang1,Liu Zhongqi1,Song Hongwei13

Affiliation:

1. State Key Laboratory of Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China

2. Miami College Henan University Jinming Street Kaifeng 475004 P. R. China

3. College of Chemistry Zhengzhou University 100 Science Avenue Zhengzhou 450052 P. R. China

Abstract

AbstractCesium–formamidinium (Cs–FA) perovskites have garnered widespread interest owing to their excellent thermal‐ and photostability in achieving stable perovskite solar cells (PSCs). However, Cs–FA perovskite typically suffers from Cs+ and FA+ mismatches, affecting the Cs–FA morphology and lattice distortion, resulting in an enlarged bandgap (Eg). In this work, “upgraded” CsCl, Eu3+‐doped CsCl quantum dots, are developed to solve the key issues in Cs–FA PSCs and also exploit the advantage of Cs‐FA PSCs on stability. The introduction of Eu3+ promotes the formation of high‐quality Cs–FA films by adjusting the Pb–I cluster. CsCl:Eu3+ also offsets the local strain and lattice contraction induced by Cs+, which maintains the inherent Eg of FAPbI3 and decreases the trap density. Finally, a power conversion efficiency (PCE) of 24.13% is obtained with an excellent short‐circuit current density of 26.10 mA cm−2 . The unencapsulated devices show excellent humidity stability and storage stability, and an initial PCE of 92.2% within 500 h under continuous light illumination, and bias voltage conditions is achieved. This study provides a universal strategy to address the inherent issues of Cs–FA devices and maintain the stability of MA‐free PSCs to satisfy future commercial criteria.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3