Scalable Atomic Arrays for Spin‐Based Quantum Computers in Silicon

Author:

Jakob Alexander M.12ORCID,Robson Simon G.12,Firgau Hannes R.23,Mourik Vincent23,Schmitt Vivien23,Holmes Danielle23,Posselt Matthias4,Mayes Edwin L.H.5,Spemann Daniel6,McCallum Jeffrey C.12,Morello Andrea23,Jamieson David N.12

Affiliation:

1. School of Physics University of Melbourne Parkville VIC 3010 Australia

2. ARC Centre for Quantum Computation and Communication Technology (CQC2T) University of Technology Sydney Sydney NSW 2007 Australia

3. School of Electrical Engineering and Telecommunications UNSW Sydney NSW 2052 Australia

4. Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR) 01328 Dresden Saxony Germany

5. RMIT Microscopy and Microanalysis Facility RMIT University Melbourne Victoria 3001 Australia

6. Leibniz‐Institut für Oberflächenmodifizierung e.V. 04318 Leipzig Saxony Germany

Abstract

AbstractSemiconductor spin qubits combine excellent quantum performance with the prospect of manufacturing quantum devices using industry‐standard metal‐oxide‐semiconductor (MOS) processes. This applies also to ion‐implanted donor spins, which further afford exceptional coherence times and large Hilbert space dimension in their nuclear spin. Here multiple strategies are demonstrated and integrated to manufacture scale‐up donor‐based quantum computers. 31PF2 molecule implants are used to triple the placement certainty compared to 31P ions, while attaining 99.99% confidence in detecting the implant. Similar confidence is retained by implanting heavier atoms such as 123Sb and 209Bi, which represent high‐dimensional qudits for quantum information processing, while Sb2 molecules enable deterministic formation of closely‐spaced qudits. The deterministic formation of regular arrays of donor atoms with 300 nm spacing is demonstrated, using step‐and‐repeat implantation through a nano aperture. These methods cover the full gamut of technological requirements for the construction of donor‐based quantum computers in silicon.

Funder

Centre of Excellence for Quantum Computation and Communication Technology, Australian Research Council

Army Research Office

University of Melbourne

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3