Super‐Resolution Detection of DNA Nanostructures Using a Nanopore

Author:

Chen Kaikai1ORCID,Choudhary Adnan2,Sandler Sarah E.1ORCID,Maffeo Christopher2ORCID,Ducati Caterina3ORCID,Aksimentiev Aleksei24ORCID,Keyser Ulrich F.1ORCID

Affiliation:

1. Cavendish Laboratory University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK

2. Department of Physics University of Illinois at Urbana‐Champaign 1110 West Green Street Urbana IL 61801 USA

3. Department of Materials Science & Metallurgy University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK

4. Beckman Institute for Advanced Science and Technology University of Illinois at Urbana‐Champaign 405 N Mathews Avenue Urbana IL 61801 USA

Abstract

AbstractHigh‐resolution analysis of biomolecules has brought unprecedented insights into fundamental biological processes and dramatically advanced biosensing. Notwithstanding the ongoing resolution revolution in electron microscopy and optical imaging, only a few methods are presently available for high‐resolution analysis of unlabeled single molecules in their native states. Here, label‐free electrical sensing of structured single molecules with a spatial resolution down to single‐digit nanometers is demonstrated. Using a narrow solid‐state nanopore, the passage of a series of nanostructures attached to a freely translocating DNA molecule is detected, resolving individual nanostructures placed as close as 6 nm apart and with a surface‐to‐surface gap distance of only 2 nm. Such super‐resolution ability is attributed to the nanostructure‐induced enhancement of the electric field at the tip of the nanopore. This work demonstrates a general approach to improving the resolution of single‐molecule nanopore sensing and presents a critical advance towards label‐free, high‐resolution DNA sequence mapping, and digital information storage independent of molecular motors.

Funder

National Science Foundation

Engineering and Physical Sciences Research Council

European Research Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3