Advances in Functional Organosulfur‐Based Mediators for Regulating Performance of Lithium Metal Batteries

Author:

Fan Qianqian1,Zhang Junhao1,Fan Siying1,Xi Baojuan2,Gao Zhiyuan1,Guo Xingmei1,Duan Zhongyao1,Zheng Xiangjun1,Liu Yuanjun1,Xiong Shenglin2ORCID

Affiliation:

1. College of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China

2. College of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China

Abstract

AbstractRechargeable lithium metal batteries (LMBs) are promising next‐generation energy storage systems due to their high theoretical energy density. However, their practical applications are hindered by lithium dendrite growth and various intricate issues associated with the cathodes. These challenges can be mitigated by using organosulfur‐based mediators (OSMs), which offer the advantages of abundance, tailorable structures, and unique functional adaptability. These features enable the rational design of targeted functionalities, enhance the interfacial stability of the lithium anode and cathode, and accelerate the redox kinetics of electrodes via alternative reaction pathways, thereby effectively improving the performance of LMBs. Unlike the extensively explored field of organosulfur cathode materials, OSMs have garnered little attention. This review systematically summarizes recent advancements in OSMs for various LMB systems, including lithium–sulfur, lithium–selenium, lithium–oxygen, lithium‐intercalation cathode batteries, and other LMB systems. It briefly elucidates the operating principles of these LMB systems, the regulatory mechanisms of the corresponding OSMs, and the fundamentals of OSMs activity. Ultimately, strategic optimizations are proposed for designing novel OSMs, advanced mechanism investigation, expanded applications, and the development of safe battery systems, thereby providing directions to narrow the gap between rational modulation of organosulfur compounds and their practical implementation in batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3