Periodic and Aperiodic NiFe Nanomagnet/Ferrimagnet Hybrid Structures for 2D Magnon Steering and Interferometry with High Extinction Ratio

Author:

Watanabe Sho1,Bhat Vinayak S.12,Mucchietto Andrea1,Dayi Elif N.1,Shan Shixuan1,Grundler Dirk13ORCID

Affiliation:

1. École Polytechnique Fédérale de Lausanne (EPFL) School of Engineering, Institute of Materials Laboratory of Nanoscale Magnetic Materials and Magnonics Lausanne 1015 Switzerland

2. International Research Centre MagTop, Institute of Physics Polish Academy of Sciences Warsaw 02668 Poland

3. École Polytechnique Fédérale de Lausanne, School of Engineering Institute of Electrical and Micro Engineering Lausanne 1015 Switzerland

Abstract

AbstractMagnons, quanta of spin waves, are known to enable information processing with low power consumption at the nanoscale. So far, however, experimentally realized half‐adders, wave‐logic, and binary output operations are based on few µm‐long spin waves and restricted to one spatial direction. Here, magnons with wavelengths λ down to 50 nm in ferrimagnetic Y3Fe5O12 below 2D lattices of periodic and aperiodic ferromagnetic nanopillars are explored. Due to their high rotational symmetries and engineered magnetic resonances, the lattices allow short‐wave magnons to propagate in arbitrarily chosen on‐chip directions when excited by conventional coplanar waveguides. Performing interferometry with magnons over macroscopic distances of 350 × λ without loss of coherency, unprecedentedly high extinction ratios of up to 26 (±8) dB [31 (±2) dB] for a binary 1/0 output operation at λ = 69 nm (λ = 154 nm) are achieved in this work. The reported findings and design criteria for 2D magnon interferometry are particularly important in view of the realization of complex neuronal networks recently proposed for interfering spin waves underneath nanomagnets.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Fundacja na rzecz Nauki Polskiej

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3