Size‐Dependent Catalysis in Fenton‐like Chemistry: From Nanoparticles to Single Atoms

Author:

Guo Jirui1,Gao Baoyu1,Li Qian1,Wang Shaobin2,Shang Yanan3,Duan Xiaoguang2ORCID,Xu Xing1

Affiliation:

1. Shandong Key Laboratory of Water Pollution Control and Resource Reuse School of Environmental Science and Engineering Shandong University Jinan 250100 P. R. China

2. School of Chemical Engineering The University of Adelaide Adelaide SA 5005 Australia

3. College of Safety and Environmental Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China

Abstract

AbstractState‐of‐the‐art Fenton‐like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal‐based catalysts within AOPs, covering nanoparticles (NPs), single‐atom catalysts (SACs), and ultra‐small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton‐like reactions. In‐depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal‐support interactions affect oxidation species and pathways. The review highlights the cutting‐edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot‐scale or engineering applications of Fenton‐like‐based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in‐depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology‐based AOPs in real‐world wastewater treatment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3