Carbon Dots for Electroluminescent Light‐Emitting Diodes: Recent Progress and Future Prospects

Author:

Shi Yuxin1,Su Wen2,Yuan Fanglong1ORCID,Yuan Ting1,Song Xianzhi1,Han Yuyi1,Wei Shuyan1,Zhang Yang1,Li Yunchao1,Li Xiaohong1,Fan Louzhen1

Affiliation:

1. Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China

2. CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China

Abstract

AbstractCarbon dots (CDs), as emerging carbon nanomaterials, have been regarded as promising alternatives for electroluminescent light‐emitting diodes (LEDs) owing to their distinct characteristics, such as low toxicity, tuneable photoluminescence, and good photostability. In the last few years, despite remarkable progress achieved in CD‐based LEDs, their device performance is still inferior to that of well‐developed organic, heavy‐metal‐based QDs, and perovskite LEDs. To better exploit LED applications and boost device performance, in this review, a comprehensive overview of currently explored CDs is presented, focusing on their key optical characteristics, which are closely related to the structural design of CDs from their carbon core to surface modifications, and to macroscopic structural engineering, including the embedding of CDs in the matrix or spatial arrangement of CDs. The design of CD‐based LEDs for display and lighting applications based on the fluorescence, phosphorescence, and delayed fluorescence emission of CDs is also highlighted. Finally, it is concluded with a discussion regarding the key challenges and plausible prospects in this field. It is hoped that this review inspires more extensive research on CDs from a new perspective and promotes practical applications of CD‐based LEDs in multiple directions of current and future research.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3