Lattice Engineering on Li2CO3‐Based Sacrificial Cathode Prelithiation Agent for Improving the Energy Density of Li‐Ion Battery Full‐Cell

Author:

Zhu Yuanlong12,Chen Yilong1,Chen Jianken1,Yin Jianhua1,Sun Zhefei3,Zeng Guifan1,Wu Xiaohong1,Chen Leiyu1,Yu Xiaoyu1,Luo Haiyan1,Yan Yawen1,Zhang Haitang1,Zhang Baodan1,Kuai Xiaoxiao12,Tang Yonglin1,Xu Juping45,Yin Wen45,Qiu Yongfu6,Zhang Qiaobao3,Qiao Yu2ORCID,Sun Shi‐Gang1

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

2. Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory) Xiamen 361005 China

3. Country State Key Laboratory of Physical Chemistry of Solid Surfaces College of Materials Xiamen University Xiamen 361005 China

4. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

5. Spallation Neutron Source Science Center Dongguan 523803 China

6. School of Materials Science and Engineering Dongguan University of Technology Guangdong 523808 China

Abstract

AbstractDeveloping sacrificial cathode prelithiation technology to compensate for active lithium loss is vital for improving the energy density of lithium‐ion battery full‐cells. Li2CO3 owns high theoretical specific capacity, superior air stability, but poor conductivity as an insulator, acting as a promising but challenging prelithiation agent candidate. Herein, extracting a trace amount of Co from LiCoO2 (LCO), a lattice engineering is developed through substituting Li sites with Co and inducing Li defects to obtain a composite structure consisting of (Li0.906Co0.0430.051)2CO2.934 and ball milled LiCoO2 (Co‐Li2CO3@LCO). Notably, both the bandgap and LiO bond strength have essentially declined in this structure. Benefiting from the synergistic effect of Li defects and bulk phase catalytic regulation of Co, the potential of Li2CO3 deep decomposition significantly decreases from typical >4.7 to ≈4.25 V versus Li/Li+, presenting >600 mAh g−1 compensation capacity. Impressively, coupling 5 wt% Co‐Li2CO3@LCO within NCM‐811 cathode, 235 Wh kg−1 pouch‐type full‐cell is achieved, performing 88% capacity retention after 1000 cycles.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3