Nonreciprocal Heat Circulation Metadevices

Author:

Ju Ran1234,Cao Pei‐Chao1234,Wang Dong1234,Qi Minghong1234,Xu Liujun56,Yang Shuihua5,Qiu Cheng‐Wei5,Chen Hongsheng1234,Li Ying1234ORCID

Affiliation:

1. Interdisciplinary Center for Quantum Information State Key Laboratory of Extreme Photonics and Instrumentation ZJU‐Hangzhou Global Scientific and Technological Innovation Center Zhejiang University Hangzhou 310027 China

2. International Joint Innovation Center The Electromagnetics Academy at Zhejiang University Zhejiang University Haining 314400 China

3. Key Lab. of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang Jinhua Institute of Zhejiang University Zhejiang University Jinhua 321099 China

4. Shaoxing Institute of Zhejiang University Zhejiang University Shaoxing 312000 China

5. Department of Electrical and Computer Engineering National University of Singapore Singapore 117583 Singapore

6. Graduate School of China Academy of Engineering Physics Beijing 100193 China

Abstract

AbstractThermal nonreciprocity typically stems from nonlinearity or spatiotemporal variation of parameters. However, constrained by the inherent temperature‐dependent properties and the law of mass conservation, previous works have been compelled to treat dynamic and steady‐state cases separately. Here, by establishing a unified thermal scattering theory, the creation of a convection‐based thermal metadevice which supports both dynamic and steady‐state nonreciprocal heat circulation is reported. The nontrivial dependence between the nonreciprocal resonance peaks and the dynamic parameters is observed and the unique nonreciprocal mechanism of multiple scattering is revealed at steady state. This mechanism enables thermal nonreciprocity in the initially quasi‐symmetric scattering matrix of the three‐port metadevice and has been experimentally validated with a significant isolation ratio of heat fluxes. The findings establish a framework for thermal nonreciprocity that can be smoothly modulated for dynamic and steady‐state heat signals, it may also offer insight into other heat‐transfer‐related problems or even other fields such as acoustics and mechanics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3