Stimuli‐Responsive Nanostructured Viologen‐Siloxane Materials for Controllable Conductivity

Author:

van den Bersselaar Bart W. L.1ORCID,van de Ven Alex P. A.1,de Waal Bas F. M.1,Meskers Stefan C. J.1,Eisenreich F.12ORCID,Vantomme G.1ORCID

Affiliation:

1. Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands

2. Polymer Performance Materials Group Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands

Abstract

AbstractSpontaneous phase separation is a promising strategy for the development of novel electronic materials, as the resulting well‐defined morphologies generally exhibit enhanced conductivity. Making these structures adaptive to external stimuli is challenging, yet crucial as multistate reconfigurable switching is essential for neuromorphic materials. Here, a modular and scalable approach is presented to obtain switchable phase‐separated viologen‐siloxane nanostructures with sub‐5 nm features. The domain spacing, morphology, and conductivity of these materials can be tuned by ion exchange, repeated pulsed photoirradiation and electric stimulation. Counterion exchange triggers a postsynthetic modification in domain spacing of up to 10%. Additionally, in some cases, 2D to 1D order–order transitions are observed with the latter exhibiting a sevenfold decrease in conductivity with respect to their 2D lamellar counterparts. Moreover, the combination of the viologen core with tetraphenylborate counterions enables reversible and in situ reduction upon light irradiation. This light‐driven reduction provides access to a continuum of conducting states, reminiscent of long‐term potentiation. The repeated voltage sweeps improve the nanostructures alignment, leading to increased conductivity in a learning effect. Overall, these results highlight the adaptivity of phase‐separated nanostructures for the next generation of organic electronics, with exciting applications in smart sensors and neuromorphic devices.

Funder

Alexander von Humboldt-Stiftung

Ministerie van Onderwijs, Cultuur en Wetenschap

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3