Affiliation:
1. School of Materials Science and Engineering Central South University Changsha 410083 P. R. China
2. State Key Laboratory of Powder Metallurgy Central South University Changsha 410083 P. R. China
3. School of Engineering University of Liverpool Liverpool L69 3GH UK
Abstract
AbstractHigh‐entropy‐alloy nanoparticles (HEA‐NPs) have attracted great attention because of their unique complex compositions and tailorable properties. Further expanding the compositional space is of great significance for enriching the material library. Here, a step‐alloying strategy is developed to synthesis HEA‐NPs containing a range of strongly repellent elements (e.g., Bi–W) by using the rich‐Pt cores formed during the first liquid phase reaction as the seed of the second thermal diffusion. Remarkably, the representative HEA‐NPs‐(14) with up to 14 elements exhibits extremely excellent multifunctional electrocatalytic performance for pH‐universal hydrogen evolution reaction (HER), alkaline methanol oxidation reaction (MOR), and oxygen reduction reaction (ORR). Briefly, HEA‐NPs‐(14) only requires the ultralow overpotentials of 11 and 18 mV to deliver 10 mA cm−2 and exhibits ultralong durability for 400 and 264 h under 100 mA cm−2 in 0.5 m H2SO4 and 1 m KOH, respectively, which surpasses most advanced pH‐universal HER catalysts. Moreover, HEA‐NPs‐(14) also exhibits an impressive peak current density of 12.6 A mg−1Pt in 1 m KOH + 1 m MeOH and a half‐wave potential of 0.86 V (vs RHE.) in 0.1 m KOH. The work further expands the spectrum of possible metal alloys, which is important for the broad compositional space and future data‐driven material discovery.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献