Reverse Hydrogen Spillover on Metal Oxides for Water‐Promoted Catalytic Oxidation Reactions

Author:

Fu Hao1,Liu Hongjie1,Wang Xiyang2ORCID,Zhang Wenhua3,Zhang Hui45,Luo Yunhong6,Deng Xianwang1,King Graham7,Chen Ning7,Wang Liwei1,Wu Yimin A.2ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences Guangxi University Nanning 530004 P. R. China

2. Department of Mechanical and Mechatronics Engineering Waterloo Institute for Nanotechnology Materials Interface Foundry University of Waterloo Waterloo N2L 3G1 Canada

3. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 P. R. China

4. State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 P. R. China

5. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China

6. School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China

7. Canadian Light Source Saskatoon S7N 2V3 Canada

Abstract

AbstractUnderstanding the water‐involved mechanism on metal oxide surface and the dynamic interaction of water with active sites is crucial in solving water poisoning in catalytic reactions. Herein, this work solves this problem by designing the water‐promoted function of metal oxides in the ethanol oxidation reaction. In situ multimodal spectroscopies unveil that the competitive adsorption of water‐dissociated *OH species with O2 at Sn active sites results in water poisoning and the sluggish proton transfer in CoO‐SnO2 imparts water‐resistant effect. Carbon material as electron donor and proton transport channel optimizes the Co active sites and expedites the reverse hydrogen spillover from CoO to SnO2. The water‐promoted function arises from spillover protons facilitating O2 activation on the SnO2 surface, leading to crucial *OOH intermediate formation for catalyzing C‐H and C‐C cleavage. Consequently, the tailored CoO‐C‐SnO2 showcases a remarkable 60‐fold enhancement in ethanol oxidation reaction compared to bare SnO2 under high‐humidity conditions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Zhuang Autonomous Region

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3