Electro‐Responsive Breathing Transition of Conductive Hydrogel for Broadband Kinetic Energy Harvesting

Author:

Li Zhou1,Yun Huiru1,Yan Yuke1,Yuan Man1,Zhao Yang1,Zhao Fei1ORCID

Affiliation:

1. Key Laboratory of Cluster Science Ministry of Education of China Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China

Abstract

AbstractReclaiming kinetic energy from vibrating machines holds great promise for sustainable energy harvesting technologies. Nevertheless, the impulsive current induced by vibrations is incompatible with conventional energy storage devices. The energy‐management system necessitates novel designs of soft materials for lightweight, miniaturized, and integrated high‐frequency electrochemical devices. Here, this work develops a conductive hydrogel with an electro‐responsive polymeric network. The electro‐responsive breathing transition of the crosslinking points facilitates the expeditious formation of a localized electrolyte layer. This layer features an exceedingly high local charge density, surpassing that of a saturated electrolyte solution by an order of magnitude, and thus enabling rapid charge transport under the influence of an applied voltage. The micro‐capacitor based on the gel exhibits record‐high capacitance of ≈2 mF cm−2 when the frequency of energy input reaches up to 104 Hz. This work also demonstrates a prototype battery charger that harvests energy from a running car engine. This study presents a feasible strategy for waste energy recycling using integrated electrochemical devices, opening a new avenue for ambient energy management.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3