A Data‐Driven Approach to Molten Salt Synthesis of N‐Rich Carbon Adsorbents for Selective CO2 Capture

Author:

Burrow James N.1ORCID,Eichler John E.2ORCID,Martinez Wuilian A.2,Mullins C. Buddie123ORCID

Affiliation:

1. John J. McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712 USA

2. Department of Chemistry The University of Texas at Austin Austin TX 78712 USA

3. Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA

Abstract

AbstractApplying a design of experiments methodology to the molten salt synthesis of nanoporous carbons enables inverse design and optimization of nitrogen (N)‐rich carbon adsorbents with excellent CO2/N2 selectivity and appreciable CO2 capacity for carbon capture via swing adsorption from dilute gas mixtures such as natural gas combined cycle flue gas. This data‐driven study reveals fundamental structure‐function relationships between the synthesis conditions, physicochemical properties, and achievable selective adsorption performance of N‐rich nanoporous carbons derived from molten salt synthesis for CO2 capture. Taking advantage of size‐sieving separation of CO2 (3.30 Å) from N2 (3.64 Å) within the turbostratic nanostructure of these N‐rich carbons, while limiting deleterious N2 adsorption in a weaker adsorption site that harms selectivity, enables a large CO2 capacity (0.73 mmol g−1 at 30.4 Torr and 30 °C) with noteworthy concurrent CO2/N2 selectivity as predicted by the ideal adsorbed solution theory (SIAST = 246) with an adsorbed phase purity of 91% from a simulated gas stream containing only 4% CO2. Optimized N‐rich porous carbons, with good physicochemical stability, low cost, and moderate regeneration energy, can achieve performance for selective CO2 adsorption that competes with other classes of advanced porous materials such as chemisorbing zeolites and functionalized metal‐organic frameworks.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3