Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS)

Author:

Song Wanqing1,Xiao Caixia1,Ding Jia1,Huang Zechuan1,Yang Xinyi1,Zhang Tao1,Mitlin David2ORCID,Hu Wenbin1

Affiliation:

1. Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering Tianjin University Tianjin 300072 China

2. Materials Science Program and Texas Materials Institute The University of Texas at Austin Austin TX 78712‐1591 USA

Abstract

AbstractThis topical review focuses on the distinct role of carbon support coordination environment of single‐atom catalysts (SACs) for electrocatalysis. The article begins with an overview of atomic coordination configurations in SACs, including a discussion of the advanced characterization techniques and simulation used for understanding the active sites. A summary of key electrocatalysis applications is then provided. These processes are oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2RR). The review then shifts to modulation of the metal atom‐carbon coordination environments, focusing on nitrogen and other non‐metal coordination through modulation at the first coordination shell and modulation in the second and higher coordination shells. Representative case studies are provided, starting with the classic four‐nitrogen‐coordinated single metal atom (MN4) based SACs. Bimetallic coordination models including homo‐paired and hetero‐paired active sites are also discussed, being categorized as emerging approaches. The theme of the discussions is the correlation between synthesis methods for selective doping, the carbon structure–electron configuration changes associated with the doping, the analytical techniques used to ascertain these changes, and the resultant electrocatalysis performance. Critical unanswered questions as well as promising underexplored research directions are identified.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

U.S. Department of Energy

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3