Affiliation:
1. Centre national de la recherche scientifique University of Bordeaux Bordeaux INP, LCPO, UMR 5629 Pessac F‐33600 France
Abstract
AbstractIn response to variations in osmotic stress, in particular to hypertonicity associated with biological dysregulations, cells have developed complex mechanisms to release their excess water, thus avoiding their bursting and death. When water is expelled, cells shrink and concentrate their internal bio(macro)molecular content, inducing the formation of membraneless organelles following a liquid–liquid phase separation (LLPS) mechanism. To mimic this intrinsic property of cells, functional thermo‐responsive elastin‐like polypeptide (ELP) biomacromolecular conjugates are herein encapsulated into self‐assembled lipid vesicles using a microfluidic system, together with polyethylene glycol (PEG) to mimic cells’ interior crowded microenvironment. By inducing a hypertonic shock onto the vesicles, expelled water induces a local increase in concentration and a concomitant decrease in the cloud point temperature (Tcp) of ELP bioconjugates that phase separate and form coacervates mimicking cellular stress‐induced membraneless organelle assemblies. Horseradish peroxidase (HRP), as a model enzyme, is bioconjugated to ELPs and is locally confined in coacervates as a response to osmotic stress. This consequently increases local HRP and substrate concentrations and accelerates the kinetics of the enzymatic reaction. These results illustrate a unique way to fine‐tune enzymatic reactions dynamically as a response to a physiological change in isothermal conditions.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献