High Freshwater Flux Solar Desalination via a 3D Plasmonic Evaporator with an Efficient Heat‐Mass Evaporation Interface

Author:

Yang He1,Li Dong1,Zheng Xiaodong1,Zuo Jianyu1,Zhao Bo1,Li Dan1,Zhang Jianwei1,Liang Zhiqiang1,Jin Jian2,Ju Sheng3,Peng Meiwen14,Sun Yinghui2ORCID,Jiang Lin1ORCID

Affiliation:

1. Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou 215123 P. R. China

2. College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China

3. College of Physical Science and Technology Soochow University Suzhou 215006 P. R. China

4. Innovative Center for Flexible Devices (iFLEX) Max Planck–NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore

Abstract

AbstractPassive solar desalination with interfacial heating is a promising technique to utilize solar energy to convert seawater into fresh water through evaporation and condensation. However, the current freshwater flux of solar desalination is much below industrial requirements (> 20 L m−2 h−1). Herein, it is demonstrated that a 3D plasmonic evaporator with an efficient heat‐mass evaporation interface (HM‐EI) achieves a freshwater flux of 29.1 L m−2 h−1 for 3.5 wt.% NaCl, which surpasses the previous solar evaporators and approaches the level of reverse osmosis (the highest installed capacity in industrial seawater desalination technology). The realization of high freshwater flux solar desalination comes from the efficient HM‐EI comprising a grid‐like plasmonic macrostructure for enhanced energy utilization in heat properties and a large‐pore microstructure for accelerated ion transport in mass properties. This work provides a new direction for designing next‐generation solar evaporators with high freshwater flux for industrial requirements.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3