Tuneable Current Rectification Through a Designer Graphene Nanoribbon

Author:

Friedrich Niklas1ORCID,Li Jingcheng12ORCID,Pozo Iago3ORCID,Peña Diego3ORCID,Pascual José Ignacio14ORCID

Affiliation:

1. CIC nanoGUNE‐BRTA Donostia‐San Sebastián 20018 Spain

2. School of Physics Sun Yat‐sen University Guangzhou 510275 China

3. Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela 15782 Spain

4. Ikerbasque Basque Foundation for Science Bilbao 48013 Spain

Abstract

AbstractUnimolecular current rectifiers are fundamental building blocks in organic electronics. Rectifying behavior has been identified in numerous organic systems due to electron‐hole asymmetries of orbital levels interfaced by a metal electrode. As a consequence, the rectifying ratio (RR) determining the diode efficiency remains fixed for a chosen molecule‐metal interface. Here, a mechanically tunable molecular diode exhibiting an exceptionally large rectification ratio (>105) and reversible direction is presented. The molecular system comprises a seven‐armchair graphene nanoribbon (GNR) doped with a single unit of substitutional diboron within its structure, synthesized with atomic precision on a gold substrate by on‐surface synthesis. The diboron unit creates half‐populated in‐gap bound states and splits the GNR frontier bands into two segments, localizing the bound state in a double barrier configuration. By suspending these GNRs freely between the tip of a low‐temperature scanning tunneling microscope and the substrate, unipolar hole transport is demonstrated through the boron in‐gap state's resonance. Strong current rectification is observed, associated with the varying widths of the two barriers, which can be tuned by altering the distance between tip and substrate. This study introduces an innovative approach for the precise manipulation of molecular electronic functionalities, opening new avenues for advanced applications in organic electronics.

Funder

H2020 Future and Emerging Technologies

Ministerio de Ciencia e Innovación

Eusko Jaurlaritza

Xunta de Galicia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3