Phosphorescent Carbene‐Gold‐Arylacetylide Materials as Emitters for Near UV‐OLEDs

Author:

Brannan Alexander C.1,Cho Hwan‐Hee2,Reponen Antti‐Pekka M.2,Linnolahti Mikko3,Bochmann Manfred4ORCID,Greenham Neil C.2,Romanov Alexander S.1

Affiliation:

1. Department of Chemistry The University of Manchester Oxford Rd. Manchester M13 9PL UK

2. Department of Physics Cavendish Laboratory Cambridge University Cambridge CB3 0HF UK

3. Department of Chemistry University of Eastern Finland Joensuu FI‐80101 Finland

4. School of Chemistry University of East Anglia Earlham Road Norwich NR4 7TJ UK

Abstract

AbstractA series of carbene‐gold‐acetylide complexes [(BiCAAC)AuCC]nC6H5−n (n = 1, Au1; n = 2, Au2; n = 3, Au3; BiCAAC = bicyclic(alkyl)(amino)carbene) have been synthesized in high yields. Compounds Au1Au3 exhibit deep‐blue to blue‐green phosphorescence with good quantum yields up to 43% in all media. An increase of the (BiCAAC)Au moieties in gold complexes Au1Au3 increases the extinction coefficients in the UV–vis spectra and stronger oscillator strength coefficients supported by theoretical calculations. The luminescence radiative rates decrease with an increase of the (BiCAAC)Au moieties. The time‐dependent density functional theory study supports a charge‐transfer nature of the phosphorescence due to the large (0.5–0.6 eV) energy gap between singlet excited (S1) and triplet excited (T1) states. Transient luminescence study reveals the presence of both nonstructured UV prompt‐fluorescence and vibronically resolved long‐lived phosphorescence 428 nm. Organic light‐emitting diodes (OLED) are fabricated by physical vapor deposition with 2,8‐bis(diphenylphosphoryl)dibenzo[b,d]furan (PPF) as a host material with complex Au1. The near‐UV electroluminescence is observed at 405 nm with device efficiency of 1% while demonstrating OLED device lifetime LT50 up to 20 min at practical brightness of 10 nits, indicating a highly promising class of materials to develop stable UV‐OLEDs.

Funder

Royal Society

Academy of Finland

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3