In Situ Device‐Level TEM Characterization Based on Ultra‐Flexible Multilayer MoS2 Micro‐Cantilever

Author:

Hou Chaojian1ORCID,Wang Kun1,Zhang Wenqi1,Chen Donglei1,Wang Xiaokai1,Fan Lu23,Li Chunyang4,Zhao Jing4,Dong Lixin1ORCID

Affiliation:

1. Department of Biomedical Engineering City University of Hong Kong Hong Kong 999077 P. R. China

2. Shenzhen Key Laboratory of Marine Archaea Geo‐Omics Department of Ocean Science and Engineering Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 P. R. China

3. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou Guangdong 511458 P. R. China

4. School of Mechatronical Engineering Beijing Institute of Technology Beijing 100081 P. R. China

Abstract

AbstractCurrent state‐of‐the‐art in situ transmission electron microscopy (TEM) characterization technology has been capable of statically or dynamically nanorobotic manipulating specimens, affording abundant atom‐level material attributes. However, an insurmountable barrier between material attributes investigations and device‐level application explorations exists due to immature in situ TEM manufacturing technology and sufficient external coupled stimulus. These limitations seriously prevent the development of in situ device‐level TEM characterization. Herein, a representative in situ opto‐electromechanical TEM characterization platform is put forward by integrating an ultra‐flexible micro‐cantilever chip with optical, mechanical, and electrical coupling fields for the first time. On this platform, static and dynamic in situ device‐level TEM characterizations are implemented by utilizing molybdenum disulfide (MoS2) nanoflake as channel material. E‐beam modulation behavior in MoS2 transistors is demonstrated at ultra‐high e‐beam acceleration voltage (300 kV), stemming from inelastic scattering electron doping into MoS2 nanoflakes. Moreover, in situ dynamic bending MoS2 nanodevices without/with laser irradiation reveals asymmetric piezoresistive properties based on electromechanical effects and secondary enhanced photocurrent based on opto‐electromechanical coupling effects, accompanied by real‐time monitoring atom‐level characterization. This approach provides a step toward advanced in situ device‐level TEM characterization technology with excellent perception ability and inspires in situ TEM characterization with ultra‐sensitive force feedback and light sensing.

Funder

National Natural Science Foundation of China

University Grants Committee

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3