Room Temperature Phosphorescence from Natural, Organic Emitters and Their Application in Industrially Compostable Programmable Luminescent Tags

Author:

Thomas Heidi1ORCID,Achenbach Tim1,Hodgkinson Isla Marie2ORCID,Spoerer Yvonne3,Kuehnert Ines3ORCID,Dornack Christina2ORCID,Schellhammer Karl Sebastian1ORCID,Reineke Sebastian1ORCID

Affiliation:

1. Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) Technische Universität Dresden Hermann‐Krone‐Bau Nöthnitzer Str. 61 01187 Dresden Germany

2. Chair of Waste Management and Circular Economy Technische Universität Dresden Pratzschwitzer Str. 15 01796 Pirna Germany

3. Department Processing Technology Institute of Polymer Materials Leibniz‐Institut fuer Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany

Abstract

AbstractOrganic semiconductors provide the potential of biodegradable technologies, but prototypes do only rarely exist. Transparent, ultrathin programmable luminescent tags (PLTs) are presented for minimalistic yet efficient information storage that are fully made from biodegradable or at least industrially compostable, ready‐to‐use materials (bioPLTs). As natural emitters, the quinoline alkaloids show sufficient room temperature phosphorescence when being embedded in polymer matrices with cinchonine exhibiting superior performance. Polylactic acid provides a solution for both the matrix material and the flexible substrate. Room temperature phosphorescence can be locally controlled by the oxygen concentration in the film by using Exceval as additional oxygen blocking layers. These bioPLTs exhibit all function‐defining characteristics also found in their regular nonenvironmentally degradable analogs and, additionally, provide a simplified, high‐contrast readout under continuous‐wave illumination as a consequence of the unique luminescence properties of the natural emitter cinchonine. Limitations for flexible devices arise from limited thermal stability of the polylactic acid foil used as substrate allowing only for one writing cycle and preventing an annealing step during fabrication. Few‐cycle reprogramming is possible when using the architecture of the bioPLTs on regular quartz substrates. This work realizes the versatile platform of PLTs with less harmful materials offering more sustainable use in future.

Funder

HORIZON EUROPE European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3