Affiliation:
1. Department of Materials Science and Engineering Norwegian University of Science and Technology (NTNU) Trondheim 7491 Norway
2. Department of Physics Norwegian University of Science and Technology (NTNU) Trondheim 7491 Norway
Abstract
AbstractPolar discontinuities, as well as compositional and structural changes at oxide interfaces can give rise to a large variety of electronic and ionic phenomena. In contrast to earlier work focused on domain walls and epitaxial systems, this work investigates the relation between polar discontinuities and the local chemistry at grain boundaries in polycrystalline ferroelectric ErMnO3. Using orientation mapping and scanning probe microscopy (SPM) techniques, the polycrystalline material is demonstrated to develop charged grain boundaries with enhanced electronic conductance. By performing atom probe tomography (APT) measurements, an enrichment of erbium and a depletion of oxygen at all grain boundaries are found. The observed compositional changes translate into a charge that exceeds possible polarization‐driven effects, demonstrating that structural phenomena rather than electrostatics determine the local chemical composition and related changes in the electronic transport behavior. The study shows that the charged grain boundaries behave distinctly different from charged domain walls, giving additional opportunities for property engineering at polar oxide interfaces.
Funder
European Research Council
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献