Affiliation:
1. Department of Chemistry Macromolecules Innovation Institute Virginia Tech Blacksburg VA 24061 USA
2. Department of Mechanical Engineering Macromolecules Innovation Institute Virginia Tech Blacksburg VA 24061 USA
Abstract
AbstractAdditive manufacturing (AM) of aerogels increases the achievable geometric complexity, and affords fabrication of hierarchically porous structures. In this work, a custom heated material extrusion (MEX) device prints aerogels of poly(phenylene sulfide) (PPS), an engineering thermoplastic, via in situ thermally induced phase separation (TIPS). First, pre‐prepared solid gel inks are dissolved at high temperatures in the heated extruder barrel to form a homogeneous polymer solution. Solutions are then extruded onto a room‐temperature substrate, where printed roads maintain their bead shape and rapidly solidify via TIPS, thus enabling layer‐wise MEX AM. Printed gels are converted to aerogels via postprocessing solvent exchange and freeze‐drying. This work explores the effect of ink composition on printed aerogel morphology and thermomechanical properties. Scanning electron microscopy micrographs reveal complex hierarchical microstructures that are compositionally dependent. Printed aerogels demonstrate tailorable porosities (50.0–74.8%) and densities (0.345–0.684 g cm−3), which align well with cast aerogel analogs. Differential scanning calorimetry thermograms indicate printed aerogels are highly crystalline (≈43%), suggesting that printing does not inhibit the solidification process occurring during TIPS (polymer crystallization). Uniaxial compression testing reveals that compositionally dependent microstructure governs aerogel mechanical behavior, with compressive moduli ranging from 33.0 to 106.5 MPa.
Funder
National Science Foundation
Division of Materials Research
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献