The Interaction of Amines with Gold Nanoparticles

Author:

Lyu Yanchao1,Becerril Lucia Morillas1,Vanzan Mirko1,Corni Stefano1,Cattelan Mattia1,Granozzi Gaetano1,Frasconi Marco1,Rajak Piu23,Banerjee Pritam23,Ciancio Regina24,Mancin Fabrizio1,Scrimin Paolo1ORCID

Affiliation:

1. Department of Chemical Sciences University of Padova Via Marzolo, 1 Padova 35131 Italy

2. CNR‐IOM TASC Laboratory Area Science Park Basovizza S.S. 14, km 163.5 Trieste 34149 Italy

3. Abdus Salam International Centre for Theoretical Physics Via Beirut, 6 Trieste 34151 Italy

4. Area Science Park Padriciano 99 Trieste 34149 Italy

Abstract

AbstractUnderstanding the interactions between amines and the surface of gold nanoparticles is important because of their role in the stabilization of the nanosystems, in the formation of the protein corona, and in the preparation of semisynthetic nanozymes. By using fluorescence spectroscopy, electrochemistry, X‐ray photoelectron spectroscopy, high‐resolution transmission electron microscopy, and molecular simulation, a detailed picture of these interactions is obtained. Herein, it is shown that amines interact with surface Au(0) atoms of the nanoparticles with their lone electron pair with a strength linearly correlating with their basicity corrected for steric hindrance. The kinetics of binding depends on the position of the gold atoms (flat surfaces or edges) while the mode of binding involves a single Au(0) with nitrogen sitting on top of it. A small fraction of surface Au(I) atoms, still present, is reduced by the amines yielding a much stronger Au(0)–RN.+(RN., after the loss of a proton) interaction. In this case, the mode of binding involves two Au(0) atoms with a bridging nitrogen placed between them. Stable Au nanoparticles, as those required for robust semisynthetic nanozymes preparation, are better obtained when the protein is involved (at least in part) in the reduction of the gold ions.

Funder

China Scholarship Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3