Linearly Interlinked Fe‐Nx‐Fe Single Atoms Catalyze High‐Rate Sodium‐Sulfur Batteries

Author:

Ruan Jiufeng1,Lei Yao‐Jie2,Fan Yameng1,Borras Marcela Chaki1,Luo Zhouxin3,Yan Zichao4,Johannessen Bernt5,Gu Qinfen5,Konstantinov Konstantin1,Pang Wei Kong1,Sun Wenping3,Wang Jia‐Zhao1,Liu Hua‐Kun6,Lai Wei‐Hong1,Wang Yun‐Xiao16ORCID,Dou Shi‐Xue6

Affiliation:

1. Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong New South Wales 2500 Australia

2. Centre for Clean Energy Technology University of Technology Sydney Sydney New South Wales 2007 Australia

3. School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310058 China

4. State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China

5. Australian Synchrotron 800 Blackburn Road Clayton VIC 3168 Australia

6. Institute of Energy Material Science University of Shanghai for Science and Technology Shanghai 200093 China

Abstract

AbstractLinearly interlinked single atoms offer unprecedented physiochemical properties, but their synthesis for practical applications still poses significant challenges. Herein, linearly interlinked iron single‐atom catalysts that are loaded onto interconnected carbon channels as cathodic sulfur hosts for room‐temperature sodium‐sulfur batteries are presented. The interlinked iron single‐atom exhibits unique metallic iron bonds that facilitate the transfer of electrons to the sulfur cathode, thereby accelerating the reaction kinetics. Additionally, the columnated and interlinked carbon channels ensure rapid Na+ diffusion kinetics to support high‐rate battery reactions. By combining the iron atomic chains and the topological carbon channels, the resulting sulfur cathodes demonstrate effective high‐rate conversion performance while maintaining excellent stability. Remarkably, even after 5000 cycles at a current density of 10 A g−1, the Na‐S battery retains a capacity of 325 mAh g−1. This work can open a new avenue in the design of catalysts and carbon ionic channels, paving the way to achieve sustainable and high‐performance energy devices.

Funder

Australian Research Council

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3