An Encapsulation‐Free and Hierarchical Porous Triboelectric Scaffold with Dynamic Hydrophilicity for Efficient Cartilage Regeneration

Author:

Luo Bin12ORCID,Wang Sinan3,Song Xingqi3,Chen Shuo4,Qi Qiaoyu2,Chen Wenyi2,Deng Xiaoyuan2,Ni Yufeng2,Chu Chengzhen2,Zhou Guangdong3,Qin Xiaohong1,Lei Dong3,You Zhengwei2ORCID

Affiliation:

1. College of Textiles State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China

2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Institute of Functional Materials Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society) Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Donghua University Shanghai 201620 P. R. China

3. Department of Plastic and Reconstructive Surgery Department of Cardiology Shanghai Key Lab of Tissue Engineering Shanghai 9th People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200011 P. R. China

4. College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P. R. China

Abstract

AbstractTissue engineering and electrotherapy are two promising methods to promote tissue repair. However, their integration remains an underexplored area, because their requirements on devices are usually distinct. Triboelectric nanogenerators (TENGs) have shown great potential to develop self‐powered devices. However, due to their susceptibility to moisture, TENGs have to be encapsulated in vivo. Therefore, existing TENGs cannot be employed as tissue engineering scaffolds, which require direct interaction with surrounding cells. Here, the concept of triboelectric scaffolds (TESs) is proposed. Poly(glycerol sebacate), a biodegradable and relatively hydrophobic elastomer, is selected as the matrix of TESs. Each hydrophobic micropore in multi‐hierarchical porous TESs efficiently serves as a moisture‐resistant working unit of TENGs. Integration of tons of micropores ensures the electrotherapy ability of TESs in vivo without encapsulation. Originally hydrophobic TESs are degraded by surface erosion and transformed into hydrophilic surfaces, facilitating their role as tissue engineering scaffolds. Notably, TESs seeded with chondrocytes obtain dense and large matured cartilages after subcutaneous implantation in nude mice. Importantly, rabbits with osteochondral defects receiving TES implantation show favorable hyaline cartilage regeneration and complete cartilage healing. This work provides a promising electronic biomedical device and will inspire a series of new in vivo applications.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3