MXene‐Nanoflakes‐Enabled All‐Optical Nonlinear Activation Function for On‐Chip Photonic Deep Neural Networks

Author:

Hazan Adir1,Ratzker Barak2,Zhang Danzhen3,Katiyi Aviad1,Sokol Maxim2,Gogotsi Yury3,Karabchevsky Alina1ORCID

Affiliation:

1. School of Electrical and Computer Engineering Electro‐Optics and Photonics Engineering Department Ben‐Gurion University of the Negev Beer‐Sheva 8410501 Israel

2. Department of Materials Science and Engineering Tel Aviv University Ramat Aviv 6997801 Israel

3. A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA

Abstract

Abstract2D metal carbides and nitrides (MXene) are promising material platforms for on‐chip neural networks owing to their nonlinear saturable absorption effect. The localized surface plasmon resonances in metallic MXene nanoflakes may play an important role in enhancing the electromagnetic absorption; however, their contribution is not determined due to the lack of a precise understanding of its localized surface plasmon behavior. Here, a saturable absorber made of MXene thin film and a silicon waveguide with MXene flakes overlayer are developed to perform neuromorphic tasks. The proposed configurations are reconfigurable and can therefore be adjusted for various applications without the need to modify the physical structure of the proposed MXene‐based activator configurations via tuning the wavelength of operation. The capability and feasibility of the obtained results of machine‐learning applications are confirmed via handwritten digit classification task, with near 99% accuracy. These findings can guide the design of advanced ultrathin saturable absorption materials on a chip for a broad range of applications.

Funder

Ministry of Energy

National Science Foundation

Israel Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3