Dual‐Vacancy‐Engineered ZnIn2S4 Nanosheets for Harnessing Low‐Frequency Vibration Induced Piezoelectric Polarization Coupled with Static Dipole Field to Enhance Photocatalytic H2 Evolution

Author:

Zhong Wen‐Jia1,Hung Ming‐Yuan2,Kuo Yen‐Ting1,Tian Hong‐Kang123ORCID,Tsai Chih‐Ning1,Wu Chien‐Jung1,Lin Yi‐Dong4,Yu Hsiang‐Chun5,Lin Yan‐Gu6,Wu Jih‐Jen1ORCID

Affiliation:

1. Department of Chemical Engineering National Cheng Kung University Tainan 70101 Taiwan

2. Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing National Cheng Kung University Tainan 70101 Taiwan

3. Hierarchical Green‐Energy Materials (Hi‐GEM) Research Center National Cheng Kung University Tainan 70101 Taiwan

4. Institute of Pioneer Semiconductor Innovation National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan

5. Department of Chemistry National Taiwan University Taipei 106319 Taiwan

6. Scientific Research Division National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan

Abstract

AbstractThis study investigates the impact of In‐ and S‐vacancy concentrations on the photocatalytic activity of non‐centrosymmetric zinc indium sulfide (ZIS) nanosheets for the hydrogen evolution reaction (HER). A positive correlation between the concentrations of dual In and S vacancies and the photocatalytic HER rate over ZIS nanosheets is observed. The piezoelectric polarization, stimulated by low‐frequency vortex vibration to ensure the well‐dispersion of ZIS nanosheets in solution, plays a crucial role in enhancing photocatalytic HER over the dual‐vacancy engineered ZIS nanosheets. The piezoelectric characteristic of the defective ZIS nanosheets is confirmed through the piezopotential response measured using piezoelectric force microscopy. Piezophotocatalytic H2 evolution over the ZIS nanosheets is boosted under accelerated vortex vibrations. The research explores how vacancies alter ZIS's dipole moment and piezoelectric properties, thereby increasing electric potential gradient and improving charge‐separation efficiency, through multi‐scale simulations, including Density Functional Theory and Finite Element Analysis, and a machine‐learning interatomic potential for defect identification. Increased In and S vacancies lead to higher electric potential gradients in ZIS along [100] and [010] directions, attributing to dipole moment and the piezoelectric effect. This research provides a comprehensive exploration of vacancy engineering in ZIS nanosheets, leveraging the piezopotential and dipole field to enhance photocatalytic performances.

Funder

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3