The transition from Elasto‐Hydrodynamic to Mixed Regimes in Lubricated Friction of Soft Solid Surfaces

Author:

Dong Hao1ORCID,Moyle Nichole1,Wu Haibin2,Khripin Constantine Yuri3,Hui Chung‐Yuen2,Jagota Anand14ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering Lehigh University Bethlehem PA 18015 USA

2. Department of Mechanical and Aerospace Engineering Cornell University Ithaca NY 14853 USA

3. Michelin Americas Research Center Michelin North America Inc. Greenville SC 29605 USA

4. Department of Bioengineering Lehigh University Bethlehem PA 18015 USA

Abstract

AbstractLubricated contacts in soft materials are common in various engineering and natural settings, such as tires, haptic applications, contact lenses, and the fabrication of soft electronic devices. Two major regimes are elasto‐hydrodynamic lubrication (EHL), in which solid surfaces are fully separated by a fluid film, and mixed lubrication (ML), in which there is partial solid‐to‐solid contact. The transition between these regimes governs the minimum sliding friction achievable and is thus very important. Generally, the transition from EHL to ML regimes is believed to occur when the thickness of the lubricant layer is comparable with the amplitude of surface roughness. Here, it is reported that in lubricated sliding experiments on smooth, soft, poly(dimethylsiloxane) substrates, the transition can occur when the thickness of the liquid layer is much larger than the height of the asperities. Direct visualization of the “contact” region shows that the transition corresponds to the formation of wave‐like surface wrinkles at the leading contact edge and associated instabilities at the trailing contact edge, which are believed to trigger the transition to the mixed regime. These results change the understanding of what governs the important EHL–ML transition in the lubricated sliding of soft solids.

Funder

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3