Ultrahigh‐Voltage LiCoO2 at 4.7 V by Interface Stabilization and Band Structure Modification

Author:

Zhuang Zhaofeng1ORCID,Wang Junxiong1,Jia Kai1,Ji Guanjun1,Ma Jun1,Han Zhiyuan1,Piao Zhihong1,Gao Runhua1,Ji Haocheng1,Zhong Xiongwei1,Zhou Guangmin1ORCID,Cheng Hui‐Ming23

Affiliation:

1. Tsinghua‐Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China

2. Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

3. Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang 110016 China

Abstract

AbstractLithium cobalt oxide (LCO) is widely used in Li‐ion batteries due to its high volumetric energy density, which is generally charged to 4.3 V. Lifting the cut‐off voltage of LCO from 4.3 V to 4.7 V will increase the specific capacity from 150 to 230 mAh g‐1 with a significant improvement of 53%. However, LCO suffers serious problems of H1‐3/O1 phase transformation, unstable interface between cathode and electrolyte, and irreversible oxygen redox reaction at 4.7 V. Herein, interface stabilization and band structure modification are proposed to strengthen the crystal structure of LCO for stable cycling of LCO at an ultrahigh voltage of 4.7 V. Gradient distribution of magnesium and uniform doping of nickel in Li layers inhibit the harmful phase transitions of LCO, while uniform LiMgxNi1−xPO4 coating stabilizes the LCO‐electrolyte interface during cycles. Moreover, the modified band structure improves the oxygen redox reaction reversibility and electrochemical performance of the modified LCO. As a result, the modified LCO has a high capacity retention of 78% after 200 cycles at 4.7 V in the half cell and 63% after 500 cycles at 4.6 V in the full cell. This work makes the capacity of LCO one step closer to its theoretical specific capacity.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangdong Innovative and Entrepreneurial Research Team Program

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3