Affiliation:
1. State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
2. Engineering Research Center of Energy Storage Materials and Devices Ministry of Education Xi'an Jiaotong University Xi'an 710049 P. R. China
3. Department of Physics Chalmers University of Technology Göteborg SE 412 96 Sweden
Abstract
AbstractHigh‐stress field generated by electroplating of lithium (Li) in pre‐existing defects is the main reason for mechanical failure of solid‐state electrolyte because it drives crack propagation in electrolyte, followed by Li filament growth inside and even internal short‐circuit if the filament reaches another electrode. To understand the role of interfacial defects on mechanical failure of solid‐state electrolyte, an electro–chemo–mechanical model is built to visualize distribution of stress, relative damage, and crack formation during electrochemical plating of Li in defects. Geometry of interfacial defect is found as dominating factor for concentration of local stress field while semi‐sphere defect delivers less accumulation of damage at initial stage and the longest failure time for disintegration of electrolyte. Aspect ratio, as a key geometric parameter of defect, is investigated to reveal its impact on failure of electrolyte. Pyramidic defect with low aspect ratio of 0.2–0.5 shows branched region of damage near interface, probably causing surface pulverization of solid‐state electrolyte, whereas high aspect ratio over 3.0 will trigger accumulation of damage in bulk electrolyte. The correction between interfacial defect and electro–chemo–mechanical failure of solid‐state electrolyte is expected to provide insightful guidelines for interface design in high‐power‐density solid‐state Li metal batteries.
Funder
National Natural Science Foundation of China
China Scholarship Council
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献