Circadian Clock Regulation via Biomaterials for Nucleus Pulposus

Author:

Chen Wei12ORCID,Zheng Dandan2,Chen Hao2,Ye Tingjun1,Liu Zhihong1,Qi Jin1,Shen Hongxing2,Ruan Huitong1,Cui Wenguo1ORCID,Deng Lianfu1

Affiliation:

1. Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China

2. Department of Spine Surgery Renji Hospital Shanghai Jiao Tong University School of Medicine 160 Pujian Road Shanghai 200127 P. R. China

Abstract

AbstractCircadian clock disorder during tissue degeneration has been considered the potential pathogenesis for various chronic diseases, such as intervertebral disc degeneration (IVDD). In this study, circadian clock‐regulating biomaterials (ClockMPs) that can effectively activate the intrinsic circadian clock of nucleus pulposus cells (NPCs) in IVDD and improve the physiological function of NPCs for disc regeneration are fabricated via air‐microfluidic technique and the chemical cross‐linking between polyvinyl alcohol and modified‐phenylboronic acid. In vitro experiments verified that ClockMPs can scavenge reactive oxygen species to maintain a stable microenvironment for the circadian clock by promoting the binding of BMAL1 and CLOCK proteins. ClockMPs can regulate the expression of core circadian clock genes by activating the PI3K‐AKT pathway in NPCs to remodel the intrinsic circadian clock and promote extracellular matrix synthesis. Furthermore, in vivo experiments of IVDD treated with ClockMPs proved that ClockMPs can promote disc regeneration by regulating the circadian clock of NPCs. In conclusion, ClockMPs provided a novel and promising strategy for circadian clock regulation during tissue regeneration.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3