Hollow Hierarchical Cu2O‐Derived Electrocatalysts Steering CO2 Reduction to Multi‐Carbon Chemicals at Low Overpotentials

Author:

Li Jinhan1,Xu Keqiang1,Liu Fangming1,Li Youzeng1,Hu Yanfang1,Chen Xijie1,Wang Huan12,Xu Wence1,Ni Youxuan1,Ding Guoyu1,Zhao Tete1,Yu Meng12,Xie Wei1,Cheng Fangyi12ORCID

Affiliation:

1. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China

2. Haihe Laboratory of Sustainable Chemical Transformations 6 Scientific Research West Road Tianjin 300192 China

Abstract

AbstractThe electrochemical reduction of carbon dioxide into multi‐carbon products (C2+) using renewably generated electricity provides a promising pathway for energy and environmental sustainability. Various oxide‐derived copper (OD‐Cu) catalysts have been showcased, but still require high overpotential to drive C2+ production owing to sluggish carbon–carbon bond formation and low CO intermediate (*CO) coverage. Here, the dilemma is circumvented by elaborately devising the OD‐Cu morphology. First, computational studies propose a hollow and hierarchical OD‐Cu microstructure that can generate a core–shell microenvironment to inhibit CO evolution and accelerate *CO dimerization via intermediate confinement and electric field enhancement, thereby boosting C2+ generation. Experimentally, the designed nanoarchitectures are synthesized through a heteroseed‐induced approach followed by electrochemical activation. In situ spectroscopic studies further elaborate correlation between *CO dimerization and designed architectures. Remarkably, the hierarchical OD‐Cu manifests morphology‐dependent selectivity of CO2 reduction, giving a C2+ Faradaic efficiency of 75.6% at a considerably positive potential of −0.55 V versus reversible hydrogen electrode.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3