Resolution of MoS2 Nanosheets‐Induced Pulmonary Inflammation Driven by Nanoscale Intracellular Transformation and Extracellular‐Vesicle Shuttles

Author:

Ortiz Peña Nathaly1ORCID,Cherukula Kondareddy2,Even Benjamin3,Ji Ding‐Kun4,Razafindrakoto Sarah2,Peng Shiyuan4,Silva Amanda K. A.2,Ménard‐Moyon Cécilia4,Hillaireau Hervé3,Bianco Alberto4ORCID,Fattal Elias3,Alloyeau Damien1,Gazeau Florence2

Affiliation:

1. Université Paris Cité MPQ Matériaux et Phénomènes Quantiques CNRS 10 rue Alice Domon et Léonie Duquet 75205 Cedex 13 Paris France

2. Université Paris Cité MSC Matière et Systèmes Complexes CNRS 45 rue des Saints Pères 75006 Paris France

3. Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay 91400 Orsay France

4. CNRS Immunology Immunopathology and Therapeutic Chemistry UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France

Abstract

AbstractPulmonary exposure to some engineered nanomaterials can cause chronic lesions as a result of unresolved inflammation. Among 2D nanomaterials and graphene, MoS2 has received tremendous attention in optoelectronics and nanomedicine. Here an integrated approach is proposed to follow up the transformation of MoS2 nanosheets at the nanoscale and assesss their impact on lung inflammation status over 1 month after a single inhalation in mice. Analysis of immune cells, alveolar macrophages, extracellular vesicles, and cytokine profiling in bronchoalveolar lavage fluid (BALF) shows that MoS2 nanosheets induced initiation of lung inflammation. However, the inflammation is rapidly resolved despite the persistence of various biotransformed molybdenum‐based nanostructures in the alveolar macrophages and the extracellular vesicles for up to 1 month. Using in situ liquid phase transmission electron microscopy experiments, the dynamics of MoS2 nanosheets transformation triggered by reactive oxygen species could be evidenced. Three main transformation mechanisms are observed directly at the nanoscale level: 1) scrolling of the dispersed sheets leading to the formation of nanoscrolls and folded patches, 2) etching releasing soluble MoO4, and 3) oxidation generating oxidized sheet fragments. Extracellular vesicles released in BALF are also identified as a potential shuttle of MoS2 nanostructures and their degradation products and more importantly as mediators of inflammation resolution.

Funder

Agence Nationale de la Recherche

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3