Fluorescence‐Amplified Origami Microneedle Device for Quantitatively Monitoring Blood Glucose

Author:

Li Xianlei123ORCID,Xu Xuehui13,Wang Kewei24,Chen Yuqiu2,Zhang Yangyuchen24,Si Qingrui2,Pan Zi'an13,Jia Fan13,Cui Xinyue1,Wang Xuan13,Deng Xiongwei1,Zhao Yi56,Shu Dan56,Jiang Qiao13ORCID,Ding Baoquan137ORCID,Wu Yan13ORCID,Liu Ran2ORCID

Affiliation:

1. Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China

2. Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P. R. China

3. University of Chinese Academy of Sciences Beijing 100049 P. R. China

4. Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 P. R. China

5. Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine Tsinghua University Beijing 102218 P. R. China

6. Photomedicine Laboratory Institute of Precision Medicine Tsinghua University Beijing 102218 P. R. China

7. School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China

Abstract

AbstractExploration of clinically acceptable blood glucose monitors has been engaging in the past decades, yet the ability to quantitatively detect blood glucose in a painless, accurate, and highly sensitive manner remains limited. Herein, a fluorescence‐amplified origami microneedle (FAOM) device is described that integrates tubular DNA‐origami nanostructures and glucose oxidase molecules into its inner network to quantitatively monitor blood glucose. The skin‐attached FAOM device can collect glucose molecules in situ and transfer the input into a proton signal after the oxidase's catalysis. The proton‐driven mechanical reconfiguration of DNA‐origami tubes separates fluorescent molecules and their quenchers, eventually amplifying the glucose‐correlated fluorescence signal. The function equation established on clinical examinees suggests that FAOM can report blood glucose in a highly sensitive and quantitative manner. In clinical blind tests, the FAOM achieves well‐matched accuracy (98.70 ± 4.77%) compared with a commercial blood biochemical analyzer, fully meeting the requirements of accurate blood glucose monitoring. The FAOM device can be inserted into skin tissue in a trivially painful manner and with minimal leakage of DNA origami, substantially improving the tolerance and compliance of the blood glucose test.

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3