Electron Localization‐Triggered Proton Pumping Toward Cu Single Atoms for Electrochemical CO2 Methanation of Unprecedented Selectivity

Author:

Guo Zhenyan1,Zhou Peng2,Jiang Liqun3,Liu Shengqi1,Yang Ying1,Li Zhengyi1,Wu Peidong1,Zhang Zehui2,Li Hu1ORCID

Affiliation:

1. National Key Laboratory of Green Pesticide Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education State‐Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang Guizhou 550025 China

2. Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education South‐Central University for Nationalities Wuhan 430074 China

3. Guangdong Engineering Laboratory of Biomass High‐value Utilization Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center Guangzhou Key Laboratory of Biomass Comprehensive Utilization Institute of Biological and Medical Engineering Guangdong Academy of Sciences Guangzhou 510316 China

Abstract

AbstractSlow multi‐proton coupled electron transfer kinetics and unexpected desorption of intermediates severely hinder the selectivity of CO2 methanation. In this work, a one‐stone‐two‐bird strategy of pumping protons and improving adsorption configuration/capability enabled by electron localization is developed to be highly efficient for CH4 electrosynthesis over Cu single atoms anchored on bismuth vacancies of BiVO4 (Bi1‐xVO4─Cu), with superior kinetic isotope effect and high CH4 Faraday efficiency (92%), far outperforming state‐of‐the‐art electrocatalysts for CO2 methanation. Control experiments and theoretical calculations reveal that the bismuth vacancies (VBi) not only act as active sites for H2O dissociation but also induce electron transfer toward Cu single‐atom sites. The VBi‐induced electron localization pumps *H from VBi sites to Cu single atoms, significantly promoting the generation and stabilization of the pivotal intermediate (*CHO) for highly selective CH4 electrosynthesis. The metal vacancies as new initiators show enormous potential in the proton transfer‐involved hydrogenative conversion processes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3