Unveiling Confinement Engineering for Achieving High‐Performance Rechargeable Batteries

Author:

Lv Ruixin1,Luo Chong12ORCID,Liu Bingran1,Hu Kaikai1,Wang Ke1,Zheng Longhong1,Guo Yafei1,Du Jiahao1,Li Li123,Wu Feng123,Chen Renjie13ORCID

Affiliation:

1. Beijing Key Laboratory of Environmental Science and Engineering School of Material Science and Engineering Beijing Institute of Technology Beijing 100081 China

2. Advanced Technology Research Institute Beijing Institute of Technology Jinan 250300 China

3. Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100081 China

Abstract

AbstractThe confinement effect, restricting materials within nano/sub‐nano spaces, has emerged as an innovative approach for fundamental research in diverse application fields, including chemical engineering, membrane separation, and catalysis. This confinement principle recently presents fresh perspectives on addressing critical challenges in rechargeable batteries. Within spatial confinement, novel microstructures and physiochemical properties have been raised to promote the battery performance. Nevertheless, few clear definitions and specific reviews are available to offer a comprehensive understanding and guide for utilizing the confinement effect in batteries. This review aims to fill this gap by primarily summarizing the categorization of confinement effects across various scales and dimensions within battery systems. Subsequently, the strategic design of confinement environments is proposed to address existing challenges in rechargeable batteries. These solutions involve the manipulation of the physicochemical properties of electrolytes, the regulation of electrochemical activity, and stability of electrodes, and insights into ion transfer mechanisms. Furthermore, specific perspectives are provided to deepen the foundational understanding of the confinement effect for achieving high‐performance rechargeable batteries. Overall, this review emphasizes the transformative potential of confinement effects in tailoring the microstructure and physiochemical properties of electrode materials, highlighting their crucial role in designing novel energy storage devices.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Natural Science Foundation of Beijing Municipality

Natural Science Foundation of Shandong Province

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3