Soybean Oil‐Derived Lipids for Efficient mRNA Delivery

Author:

Tang Zhongmin12,Yu Fan1,Hsu Jessica C.2,Shi Jianlin13,Cai Weibo2ORCID

Affiliation:

1. Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200072 P. R. China

2. Departments of Radiology and Medical Physics University of Wisconsin Madison WI 53705 USA

3. State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease Chinese Academy of Medical Sciences (2021RU012) Shanghai 200050 P. R. China

Abstract

AbstractThe rapid progress in the development of COVID‐19 mRNA vaccines during the initial year of the pandemic has highlighted the significance of lipid nanoparticles in therapeutic delivery. Various lipid types have been investigated for the effective delivery of mRNA, each with unique functions and versatile applications. These range from their use in cancer immunotherapy and gene editing to their role in developing vaccines against infectious diseases. Nonetheless, continued exploration of novel lipids and synthetic approaches is necessary to further advance the understanding and expand the techniques for optimizing mRNA delivery. In this work, new lipids derived from FDA‐approved soybean oil are facilely synthesized and these are employed for efficient mRNA delivery. EGFP and Fluc mRNA are used to evaluate the delivery efficacy of the lipid formulations both in vitro and in vivo. Furthermore, organ‐specific targeting capabilities are observed in certain formulations, and their outstanding performance is demonstrated in delivering Cre mRNA for gene editing. These results showcase the potential of soybean oil‐derived lipids in mRNA delivery, offering utility across a broad spectrum of bioapplications.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3