Monolithic Zirconium‐Based Metal–Organic Frameworks for Energy‐Efficient Water Adsorption Applications

Author:

Çamur Ceren1ORCID,Babu Robin1,Suárez del Pino José A.2,Rampal Nakul1,Pérez‐Carvajal Javier23,Hügenell Philipp4,Ernst Sebastian‐Johannes4,Silvestre‐Albero Joaquin5,Imaz Inhar2,Madden David G.1,Maspoch Daniel26,Fairen‐Jimenez David1ORCID

Affiliation:

1. The Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK

2. Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and the Barcelona Institute of Science and Technology Campus UAB Bellaterra Barcelona 08193 Spain

3. Laboratoire de Physique de l'Ecole Normale Supérieure‐ENS Université PSL CNRS Paris 75005 France

4. Fraunhofer‐Institute for Solar Energy Systems (ISE) Heidenhofstr. 2 79110 Freiburg Germany

5. Laboratorio de Materiales Avanzados Depto. de Química Inorgánica Universidad de Alicante San Vicente del Raspeig E‐03690 Spain

6. ICREA Pg. Lluís Companys 23 Barcelona 08010 Spain

Abstract

AbstractSpace cooling and heating, ventilation, and air conditioning (HVAC) accounts for roughly 10% of global electricity use and are responsible for ca. 1.13 gigatonnes of CO2 emissions annually. Adsorbent‐based HVAC technologies have long been touted as an energy‐efficient alternative to traditional refrigeration systems. However, thus far, no suitable adsorbents have been developed which overcome the drawbacks associated with traditional sorbent materials such as silica gels and zeolites. Metal–organic frameworks (MOFs) offer order‐of‐magnitude improvements in water adsorption and regeneration energy requirements. However, the deployment of MOFs in HVAC applications has been hampered by issues related to MOF powder processing. Herein, three high‐density, shaped, monolithic MOFs (UiO‐66, UiO‐66‐NH2, and Zr‐fumarate) with exceptional volumetric gas/vapor uptake are developed—solving previous issues in MOF‐HVAC deployment. The monolithic structures across the mesoporous range are visualized using small‐angle X‐ray scattering and lattice‐gas models, giving accurate predictions of adsorption characteristics of the monolithic materials. It is also demonstrated that a fragile MOF such as Zr‐fumarate can be synthesized in monolithic form with a bulk density of 0.76 gcm−3 without losing any adsorption performance, having a coefficient of performance (COP) of 0.71 with a low regeneration temperature (≤ 100 °C).

Funder

European Research Council

Innovate UK

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference60 articles.

1. B.Dean J.Dulac T.Morgan U.Remme B.Motherway The Future of Cooling: Opportunities for Energy‐Efficient Air Conditioning International Energy Agency 2018 https://iea.blob.core.windows.net/assets/0bb45525-277f-4c9c-8d0c-9c0cb5e7d525/The_Future_of_Cooling.pdf.

2. Thermal-Aware Hybrid Workload Management in a Green Datacenter towards Renewable Energy Utilization

3. A review of air conditioning energy performance in data centers

4. Amplification of future energy demand growth due to climate change

5. Metal-Organic Frameworks as advanced moisture sorbents for energy-efficient high temperature cooling

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3