NBOH Site‐Activated Graphene Quantum Dots for Boosting Electrochemical Hydrogen Peroxide Production

Author:

Fan Mengmeng12ORCID,Wang Zeming3,Sun Kang2,Wang Ao2,Zhao Yuying2,Yuan Qixin1,Wang Ruibin1,Raj Jithu4,Wu Jingjie4ORCID,Jiang Jianchun12,Wang Liang3

Affiliation:

1. Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China

2. Key Lab of Biomass Energy and Material Jiangsu Province Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources Institute of Chemical Industry of Forest Products Chinese Academy of Forestry Nanjing 210042 China

3. Institute of Nanochemistry and Nanobiology School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China

4. Department of Chemical and Environmental Engineering University of Cincinnati Cincinnati OH 45221 USA

Abstract

AbstractCarbon materials are considered promising 2/4 e oxygen reduction reaction (ORR) electrocatalysts for synthesizing H2O2/H2O via regulating heteroatom dopants and functionalization. Here, various doped and functionalized graphene quantum dots (GQDs) are designed to reveal the crucial active sites of carbon materials for ORR to produce H2O2. Density functional theory (DFT) calculations predict that the edge structure involving edge N, B dopant pairs and further OH functionalization to the B (NBOH) is an active center for 2e ORR. To verify the above predication, GQDs with an enriched density of NBOH (NBO‐GQDs) are designed and synthesized by the hydrothermal reaction of NH2 edge‐functionalized GQDs with H3BO3 forming six‐member heterocycle containing the NBOH structure. When dispersed on conductive carbon substrates, the NBO‐GQDs show H2O2 selectivity of over 90% at 0.7 –0.8 V versus reversible hydrogen electrode in the alkaline solution in a rotating ring‐disk electrode setup. The selectivity retains 90% of the initial value after 12 h stability test. In a flow cell setup, the H2O2 production rate is up to 709 mmol gcatalyst−1 h−1, superior to most reported carbon‐ and metal‐based electrocatalysts. This work provides molecular insight into the design and formulation of highly efficient carbon‐based catalysts for sustainable H2O2 production.

Funder

National Natural Science Foundation of China

Foundation Research Project of Jiangsu Province

Nanjing Forestry University

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3